Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor.

نویسندگان

  • Sosuke Iwai
  • Taro Q P Uyeda
چکیده

Many proteins have been shown to undergo conformational changes in response to externally applied force in vitro, but whether the force-induced protein conformational changes occur in vivo remains unclear. To reveal the force-induced conformational changes, or strains, within proteins in living cells, we have developed a genetically encoded fluorescent "strain sensor," by combining the proximity imaging (PRIM) technique, which uses spectral changes of 2 GFP molecules that are in direct contact, and myosin-actin as a model system. The developed PRIM-based strain sensor module (PriSSM) consists of the tandem fusion of a normal and circularly permuted GFP. To apply strain to PriSSM, it was inserted between 2 motor domains of Dictyostelium myosin II. In the absence of strain, the 2 GFP moieties in PriSSM are in contact, whereas when the motor domains are bound to F-actin, PriSSM has a strained conformation, leading to the loss of contact and a concomitant spectral change. Using the sensor system, we found that the position of the lever arm in the rigor state was affected by mutations within the motor domain. Moreover, the sensor was used to visualize the interaction between myosin II and F-actin in Dictyostelium cells. In normal cells, myosin was largely detached from F-actin, whereas ATP depletion or hyperosmotic stress increased the fraction of myosin bound to F-actin. The PRIM-based strain sensor may provide a general approach for studying force-induced protein conformational changes in cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of a Genetically Encoded Biosensor for Live Cell Imaging of L-Valine Production in Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum Strains

The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in si...

متن کامل

Perspectives for using genetically encoded fluorescent biosensors in plants

Genetically encoded fluorescent biosensors have long proven to be excellent tools for quantitative live imaging, but sensor applications in plants have been lacking behind those in mammalian systems with respect to the variety of sensors and tissue types used. How can this be improved, and what can be expected for the use of genetically encoded fluorescent biosensors in plants in the future? In...

متن کامل

Gfp Sensors

The green fluorescent protein (GFP) and related genetically-encoded fluorescent proteins have had a major impact in cell biology. GFP has diverse applications in studies of protein localization, dynamics, interactions and regulation. GFP is targetable to specific cellular sites in cell culture models and in vivo in a wide variety of organisms. A unique application of fluorescent proteins is the...

متن کامل

Highlighted Ca2+ imaging with a genetically encoded ‘caged’ indicator

Genetically encoded fluorescent indicators for bioimaging are powerful tools for visualizing biological phenomena in specified cell types or cellular compartments. However, available gene promoters or localization sequences are not applicable for visualizing all expression events. Furthermore, a visualization technique focusing on single cells or cellular compartments is required for characteri...

متن کامل

Myosin II does not contribute to wound repair in Dictyostelium cells

Cells are always subjected to mechanical stresses, resulting in wounds of the cell membrane, but cells are able to repair and reseal their wounded membrane. Previous reports have shown that actin and myosin II accumulate around the wound and that the constriction of this purse-string closes the membrane pore. Here, we developed a microsurgical wound assay to assess wound repair in Dictyostelium...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 44  شماره 

صفحات  -

تاریخ انتشار 2008